EAST PENN SCHOOL DISTRICT

Course Name:
Geometry CP/Honors

Curriculum Proposal Date:
October 10, 2022

Curriculum Developed by:
Lori Babel, Kelly Lesko

GEOMETRY CP/HONORS - THE BASICS

STAGE 1 | DESIRED RESULTS

Context and relevance for student learning

Standards
 CC.2.3.HS.A. 11 Apply

 coordinate geometry to prove simple geometric theorems algebraically. CC.2.3.HS.A. 3 Verify and apply geometric theorems as they relate to geometric figures.
Transfer

Students will be able to independently use their learning to keep considering...

- G.2.1.2 Solve problems using analytic geometry.
- G.2.2.1 Use and/or compare measurements of angles.

UNDERSTANDINGS

 Meaning

 Meaning
 ESSENTIAL QUESTIONS

Students will understand that...

- Points, lines, and planes are the foundations of Geometry and are connected to infinitely many real world examples.
- The rules and relationships of angles, pairs of angles and how to find missing angle measures.

Students will keep considering...
. What are the basic tools of geometry?

- What symbols, formulas and vocabulary are important for communicating within the context of Geometry?
] How do the rules of geometry apply to the coordinate plane?

Acquisition

Students will know...

- Notation, definition, and relationship of the following terms: undefined term, point, line, plane, collinear, non-collinear, coplanar, non-coplanar, ray, line segment, opposite rays, intersection, betweeness of points, perpendicular lines, angle, vertex, side, degree, adjacent angles, vertical angles, linear pair, angle bisector, complementary angles, supplementary angles, acute angles, right angles, obtuse angles, straight angle, congruence, angle bisector, vertical angles, linear pair, supplementary angles, complementary angles, segment addition postulate, segment bisector, angle addition postulate, perimeter, area, x-and y-coordinates, distance, distance formula, midpoint, midpoint formula.

Students will be skilled at...

- G.2.1.2.1 Calculate the distance and/or midpoint between two points on a number line or on a coordinate plane.
- G.2.2.1.1 Use properties of angles formed by intersecting lines to find the measures of missing angles.
- Identifying and modeling points, lines, and planes
- Identifying intersecting lines and planes
- Finding the distance between two points
- Finding the midpoint of a segment
- Using the midpoint and segment bisector to find measures of segments
- Measure and classify angles

U Using congruent angles and the bisector of an angle

- Identifying and using special pairs of angles
- Identifying perpendicular lines

GEOMETRY CP/HONORS - PROOFS

STAGE 1 | DESIRED RESULTS

Context and relevance for student learning

Standards

CC.2.3.HS.A. 3 Verify and apply geometric theorems as they relate to geometric figures.

Transfer

Students will be able to independently use their learning to keep considering..

- G.1.3.2 Write formal proofs and/or use logic statements to construct or validate arguments.
- Meaning

Students will understand that.

- There are mathematical ways of thinking that can be applied outside of math class.
- Logical reasoning is a tool you can use to build confidence and support for your beliefs.
- Correct reasoning is the universal language of truth and facts.
[. Statements, converses, inverses, and contrapositives can be used to construct valid arguments relating to geometric theorems

Acquisition

Students will know...

- Meaning and relationship of the following terms: postulate, theorem, counterexample, conjecture, hypothesis, conclusion, conditional, truth value, given, proof, indirect proof, proof by contradiction, inductive reasoning, deductive reasoning, negation, conjunction, disjunction, biconditional

Students will be skilled at...

- G.1.3.2.1 Write, analyze, complete, or identify formal proofs (e.g., direct and/or indirect proofs/proofs by contradiction)
- Making conjectures based on inductive and deductive reasoning
Finding the truth value of a conditional statement
- Finding counterexamples
- Analyzing if-then statements
- Writing proofs using segment addition and segment congruence
- Writing proofs using angle postulate, angle properties, and angle congruence
- Writing an indirect proof

GEOMETRY CP/HONORS - PARALLEL LINES
 STAGE 1 | DESIRED RESULTS

Context and relevance for student learning

Standards	Transfer	
CC.2.3.8.A. 2 Understand and apply congruence, similarity, and geometric transformations using various tools. CC.2.3.HS.A. 3 Verify and apply geometric theorems as they relate to geometric figures.	Students will be able to independently use their learning to keep considering... - G.2.2.1 Use and/or compare measurements of angles - G.1.3.2 Write formal proofs and/or use logic statements to construct or validate arguments.	
		Meaning
	UNDERSTANDINGS Students will understand that... - Special relationships apply to angles formed by parallel and intersecting lines and planes	ESSENTIAL QUESTIONS Students will keep considering... - What geometric conditions are sufficient and necessary to prove lines parallel? - What are the angle relationships when parallel lines are cut by a transversal?
	Acquisition	
	Students will know... - Meaning and relationship of the following terms: parallel lines, perpendicular lines, skew lines, parallel planes, interior angles, exterior angles, corresponding angles, alternate interior angles, alternate exterior angles, consecutive (same-side) interior angles, transversal.	Students will be skilled at... - G.2.2.1.2 Use properties of angles formed when two parallel lines are cut by a transversal to find the measures of missing angles. - G.1.3.2.1 Write, analyze, complete, or identify formal proofs (e.g., direct and/or indirect proofs/proofs by contradiction). - Identifying relationships between multiple lines and planes - Using angles created by transversal intersecting parallel lines to prove theorems about lines and angles - Identifying the difference between parallel, perpendicular, and skew lines - Naming angle pairs created by parallel lines and a transversal - Using algebra to find angle measurements - Using converse theorems to prove lines parallel - Using properties of geometric figures involving parallel lines to solve for a missing quantity

GEOMETRY CP/HONORS - TRIANGLE BASICS

STAGE 1 | DESIRED RESULTS

Context and relevance for student learning

Standards

CC.2.3.8.A. 2 Understand and apply congruence, similarity, and geometric transformations using various tools
CC.2.3.HS.A. 3 Verify and apply geometric theorems as they relate to geometric figures.
CC.2.3.HS.A. 13 Analyze relationships between two-dimensional and three-dimensional objects CC.2.3.HS.A. 1 Use geometric figures and their properties to represent transformations in the plane.
CC.2.3.HS.A. 2 Apply rigid
transformations to determine and explain congruence.
CC.2.3.HS.A. 5 Create justifications based on transformations to establish similarity of plane figures. CC.2.3.HS.A. 6 Verify and apply theorems involving similarity as they relate to plane figures

Transfer

Students will be able to independently use their learning to keep considering..
G.1.2.1 Recognize and/or apply properties of angles, polygons, and polyhedra.

G G.1.3.1 Use properties of congruence, correspondence, and similarity in problem-solving settings involving two- and three dimensional figures.

- G.1.3.2 Write formal proofs and/or use logic statements to construct or validate arguments.

UNDERSTANDINGS

Students will understand that..

- The classifications and given information about triangles can be used to prove congruency.

Students will know...

- Meaning and relationship of the following terms: acute triangle, right triangle, obtuse triangle, equilateral triangle, equiangular triangle, scalene triangle, isosceles triangle (legs, base angle, vertex angle), interior angle, exterior angle, remote interior angle, interior angle sum, exterior angle sum, corresponding angles, corresponding sides, congruent polygons, congruent triangles, Side-Side-Side (SSS), Side-Angle-Side (SAS), Angle-Side-Angle (ASA), Angle-Angle-Side (AAS), Hypotenuse-Leg (HL), included angles, included sides, corresponding parts of congruent triangles are congruent (CPCTC), third angles theorem

Meaning

ESSENTIAL QUESTIONS
Students will keep considering...
What properties exist for triangles?

- How can congruency of two triangles be determined?

Acquisition

Students will be skilled at...
G.1.2.1.1 Identify and/or use properties of triangles

- G.1.2.1.3 Identify and/or use properties of isosceles and equilateral triangles.
G G.1.3.1.1 Identify and/or use properties of congruent and similar polygons or solids.
- G.1.3.2.1 Write, analyze, complete, or identify formal proofs (e.g. direct and/or indirect proofs/proofs by contradiction).
\square Identifying and classifying triangles by side and angle measures
Applying the Triangle Angle Sum Theorem and the Exterior Angle Theorem
- Naming and using the corresponding parts of congruent triangles
- Proving triangles congruent (using the definition of congruent polygons, SSS, SAS, ASA, AAS, HL
- Using properties of isosceles and equilateral triangles to find missing measures of triangles
- Using the definition of congruence or triangle congruences (ASA, SAS, SSS, AAS) in terms of transformations (rotation, reflection, or both) to show that two triangles are congruent.

GEOMETRY CP/HONORS - POLYGONS

STAGE 1 | DESIRED RESULTS

Context and relevance for student learning

Standards

CC.2.3.8.A. 2

Understand and apply congruence, similarity, and geometric transformations using various tools.
CC.2.3.HS.A. 3 Verify and apply geometric theorems as they relate to geometric figures.
CC.2.3.HS.A. 6 Verify and apply theorems involving similarity as they relate to plane figures.
CC.2.3.HS.A. 13

Analyze relationships between
two-dimensional and three-dimensional objects.
CC.2.3.8.A. 3

Understand and apply the Pythagorean theorem to solve problems.
CC.2.3.HS.A. 11 Apply coordinate geometry to prove simple geometric theorems algebraically.

Transfer

Students will be able to independently use their learning to keep considering...

- G.1.2.1 Recognize and/or apply properties of angles, polygons, and polyhedra.
- G.1.3.2 Write formal proofs and/or use logic statements to construct or validate arguments.
- G.2.1.2 Solve problems using analytic geometry

Meaning

UNDERSTANDINGS

Students will understand that...

- We classify polygons by examining their sides and angles.

Students will know...

- Meaning and relationship of the following terms: convex, concave, polygon, regular polygon, equilateral polygon equiangular polygon, diagonal, quadrilateral, parallelogram, rhombus, rectangle, square, kite, trapezoid (base, legs, base angles), isosceles trapezoid, midsegment of a trapezoid, polygon interior angle theorem, polygon exterior angle sum theorem

ESSENTIAL QUESTIONS
Students will keep considering...

- How do we use the sum of the measures of the interior and exterior angles of a polygon?
- How do we identify and apply properties of polygons?
- How can we use coordinates to prove simple geometric theorems algebraically (for example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle)?

Acquisition

Students will be skilled at...

- G.1.2.1.2 Identify and/or use properties of quadrilaterals.
- G.1.3.2.1 Write, analyze, complete, or identify formal proofs (e.g., direct and/or indirect proofs/proofs by contradiction).
- G.2.1.2.1 Calculate the distance and/or midpoint between two points on a number line or on a coordinate plane.
G.2.1.2.2 Relate slope to perpendicularity and/or parallelism (limit to linear algebraic equations).
- G.2.1.2.3 Use slope, distance, and/or midpoint between two points on a coordinate plane to establish properties of a two-dimensional shape.
- The properties of parallelograms and how they can be used to find missing side and angle measures
] Finding the slope of a line
R Recognizing, identifying, and applying properties of polygons
- Proving a quadrilateral is a parallelogram, rhombus, square, or rectangle
- Using the properties of kites and trapezoids to find missing side and angle measures
- Using the slope of the line to determine if line are parallel, perpendicular, or neither
- Finding and using the sum of the measures of interior/exterior angles of a polygon

D Determining what is a parralelogram and what is not (kite, trapezoid)

GEOMETRY CP/HONORS - SIMILARITY

STAGE 1 | DESIRED RESULTS

Context and relevance for student learning

Standards		Transfer
CC.2.3.HS.A. 1 Use geometric figures and their properties to represent transformations in the plane. CC.2.3.HS.A. 2 Apply rigid transformations to determine and explain congruence. CC.2.3.HS.A. 5 Create justifications based on transformations to establish similarity of plane figures. CC.2.3.HS.A. 6 Verify and apply theorems involving similarity as they relate to plane figures.	Students will be able to independently use their learning to keep considering... G G.1.3.1 Use properties of congruence, correspondence, and similarity in problem-solving settings involving two- and three dimensional figures.	
	Meaning	
	UNDERSTANDINGS Students will understand that... - Similar figures can be used to model real-life situations.	ESSENTIAL QUESTIONS Students will keep considering...] How do we identify similar polygons and use ratios/proportions to find missing lengths and angle measures?
	Acquisition	
	Students will know... - Meaning and relationship of the following terms: altitude, median, angle bisector, ratio, proportion, cross products, similar, similar polygons, similarity ratio, scale-factor, Angle-Angle Similarity (AA~), Side-Side-Side Similarity (SSS~), Side-Angle-Side Similarity (SAS~) - There is a difference between congruent triangles and similar triangles which relates to how the triangle is transformed	Students will be skilled at... - G.1.3.1.1 Identify and/or use properties of congruent and similar polygons or solids. - G.1.3.1.2 Identify and/or use proportional relationships in similar figures. - G.1.3.2.1 Write, analyze, complete, or identify formal proofs (e.g., direct and/or indirect proofs/proofs by contradiction). - Applying properties of similarity in the coordinate plane - Applying proportions to identify similar figures - Solving problems using the properties of similar polygons - Identifying similar triangles using Angle-Angle Similarity (AA~), Side-Side-Side Similarity (SSS~), and Side-Angle-Side Similarity (SAS~) - Using similar triangles to solve problems - Using proportional parts within triangles and with parallel lines - Using ratios to make indirect measurements - Recognizing and using proportional relationships of angle bisectors, altitudes, and medians of similar triangles - Using the triangle angle bisector theorem

GEOMETRY CP/HONORS - RIGHT TRIANGLE AND TRIGONOMETRY
STAGE 1 | DESIRED RESULTS
Context and relevance for student learning

Standards	Transfer	
CC.2.2.HS.C. 9 Prove the Pythagorean identity and use it to calculate trigonometric ratios. CC.2.3.HS.A. 7 Apply trigonometric ratios to solve problems involving right triangles.	Students will be able to independently use their learning to keep considering... - G.2.1.1 Solve problems involving right triangles.	
		Meaning
	UNDERSTANDINGS Students will understand that...] The sides of a right triangle have a broad range of relationships that lead to many applications and uses.	ESSENTIAL QUESTIONS Students will keep considering... - How do we use the pythagorean theorem and its converse? - How do we use trigonometry to find missing measures of triangles? - What are the different methods that can be used to solve a right triangle?
	Acquisition	
	Students will know... - Meaning and relationship of the following terms: pythagorean theorem, pythagorean triple, sine, cosine, tangent, inverse sine, inverse cosine, inverse tangent, trigonometric ratios, angle of elevation, angle of depression	Students will be skilled at... [G.2.1.1.1 Use the Pythagorean theorem to write and/or solve problems involving right triangles. - G.2.1.1.2 Use trigonometric ratios to write and/or solve problems involving right triangles. - Using the pythagorean theorem and the converse of the pythagorean theorem - Using the special right triangles (45-45-90 \& 30-60-90) to find missing measures of triangles - Using the sine, cosine, tangent, and their inverses to find missing measures of triangles - Modeling a practical situation involving right triangles using the trigonometric functions and the Pythagorean theorem - Solving real-world problems using angles of elevation and depression - How can we use the properties of special right triangles to find missing lengths of composite figures?

GEOMETRY CP/HONORS - CIRCLES

STAGE 1 | DESIRED RESULTS

Context and relevance for student learning

Standards

CC.2.2.HS.C. 1 Use the concept and notation of functions to interpret and apply them in terms of their context.
CC.2.3.HS.A. 8 Apply geometric theorems to verify properties of circles.
CC.2.3.HS.A. 9

Extend the concept of similarity to determine arc lengths and areas of sectors of circles.

Transfer

Students will be able to independently use their learning to keep considering...

- G.1.1.1 Identify and/or use parts of circles and segments associated with circles, spheres, and cylinders.
- G.2.2.2 Use and/or develop procedures to determine or describe measures of perimeter, circumference, and/or area. (May require conversions within the same system.)

Meaning	
UNDERSTANDINGS Students will understand that... - The properties of angles, arcs, chords, tangents, radii, and secants can be used to solve problems involving circles.	ESSENTIAL QUESTIONS Students will keep considering... - What are the relationships between a circle and its arcs, lines, segments and angles? - How do we define and use secants and tangents? - How do we use those relationships to solve problems?

Students will know...

- Meaning and relationship of the following terms: center, concentric circles, radius, diameter, chord, tangent, secant, arc, circle, arc measure, minor arc, arc, adjacent arcs, major arc semicircle, sector a circle, segment of a circle, arc length, inscribed angle, intercepted arc, secant segment, area of a circle, point of tangency, circumference, circumscribed

Acquisition

Students will be skilled at...

- G.1.1.1.1 Identify, determine, and/or use the radius, diameter, segment, and/or tangent of a circle.
G G.1.1.1.2 Identify, determine, and/or use the arcs, semicircles, sectors, and/or angles of a circle.
- G.1.1.1.3 Use chords, tangents, and secants to find missing arc measures or missing segment measures.
\square G.2.2.2.5 Find the area of a sector of a circle.
- Identifying, recognizing and using parts of circles
- Solving problems involving the circumference of a circle
- Finding arc lengths
- Recognizing and using relationships between arcs and chords
- Finding measures of inscribed angles, angles of inscribed polygons and circumscribed polygons
- Finding measures of angles formed by lines intersecting on, inside, or outside of the circle
- Finding measures of segments that intersect on, inside or outside of the circle?
- Finding the area of a circle and a sector of a circle
- Relating the tangent of a circle to the circle's radius at the point of tangency

GEOMETRY CP/HONORS - AREA
 STAGE 1 | DESIRED RESULTS
 Context and relevance for student learning

Standards	Transfer	
CC.2.2.HS.C. 1 Use the concept and notation of functions to interpret and apply them in terms of their context. CC.2.3.8.A. 2 Understand	Students will be able to independently use their learning to keep considering... G.1.2.1 Recognize and/or apply properties of angles, polygons, and polyhedra. - G.2.2.2 Use and/or develop procedures to determine or describe measures of perimeter, circumference, and/or area. (May require conversions within the same system.) - G.2.2.3 Describe how a change in one dimension of a two dimensional figure affects other measurements of that figure. - G.2.2.4 Apply probability to practical situations.	
	Meaning	
similarity, and geometric transformations using various tools. CC.2.3.HS.A. 3 Verify and apply geometric theorems as they relate to geometric figures. CC.2.3.HS.A. 8 Apply	UNDERSTANDINGS Students will understand that... - Area, perimeter, and circumference can be applied in modeling real world situations when problem solving.	ESSENTIAL QUESTIONS Students will keep considering... - What strategies and formulas can be used to find perimeter and area of polygons? - How can we use the properties of known figures to find missing measures of composite figures? . How do we use coordinates to compute perimeters of polygons and areas of triangles and parallelograms (rectangles, rhombuses, squares)? - How can geometric probability be used to predict results in real world situations?
	Acquisition	
verify properties of circles. CC.2.3.HS.A. 13 Analyze relationships between two-dimensional and three-dimensional objects. CC.2.3.HS.A. 14 Apply geometric concepts to model and solve real-world problems.	Students will know... - Meaning and relationship of the following terms: area, perimeter, apothem, regular, central angle, composite figure, altitude, area of a sector, radius, diameter, circumference, base, height, composite figure, geometric probability	Students will be skilled at... - G.1.2.1.4 Identify and/or use properties of regular polygons. G G.2.2.2.1 Estimate area, perimeter, or circumference of an irregular figure. \square G.2.2.2.2 Find the measurement of a missing length, given the perimeter, circumference, or area. - G.2.2.2.3 Find the side lengths of a polygon with a given perimeter to maximize the area of the polygon - G.2.2.2.4 Develop and/or use strategies to estimate the area of a compound/composite figure - G.2.2.3.1 Describe how a change in the linear dimension of a figure affects its perimeter, circumference, and area (e.g., How does changing the length of the radius of a circle affect the circumference of the circle?). - G.2.2.4.1 Use area models to find probabilities. \square Describing the effect on perimeter, area, and circumference when one or more dimensions are changed - Finding perimeter, and area of polygons - Using sums of areas of standard shapes to calculate the areas of complex shapes

GEOMETRY CP/HONORS - 3D SHAPES

STAGE 1 | DESIRED RESULTS

Standards

CC.2.3.HS.A. 3 Verify and apply geometric theorems as they relate to geometric figures CC.2.3.HS.A. 8 Apply geometric theorems to verify properties of circles.
CC.2.3.HS.A. 9 Extend the concept of similarity to determine arc lengths and areas of sectors of circles.
CC.2.3.HS.A. 13 Analyze relationships between two-dimensional and three-dimensional objects. CC.2.3.8.A. 1 Apply the concepts of volume of cylinders, cones, and spheres to solve real-world and mathematical problems CC.2.3.HS.A. 12 Explain volume formulas and use them to solve problems.
CC.2.3.HS.A. 14 Apply geometric concepts to model and solve real world problems

Context and relevance for student learning

Transfer

Students will be able to independently use their learning to keep considering...
G.1.1.1 Identify and/or use parts of circles and segments associated with circles, spheres, and cylinders
G.1.2.1 Recognize and/or apply properties of angles, polygons, and polyhedra.

- G.2.3.1 Use and/or develop procedures to determine or describe measures of surface area and/or volume. (May require conversions within the same system.)

	Meaning
UNDERSTANDINGS Students will understand that... - Geometric solids can be measured using lateral area, surface area and volume.	ESSENTIAL QUESTIONS Students will keep considering... - How are geometric solids measured? - How do you know which measure to use?
Acquisition	
Students will know... - Meaning and relationship of the following terms: face, edge, vertex, height, altitude, slant height, prism, base, cylinder, pyramid, cone, sphere, cube, surface area, volume, lateral area, diameter, radius	Students will be skilled at... - G.1.1.1.4 Identify and/or use the properties of a sphere or cylinder. - G.1.2.1.5 Identify and/or use properties of pyramids and prisms. - G.2.3.1.1 Calculate the surface area of prisms, cylinders, cones, pyramids, and/or spheres. Formulas are provided on a reference sheet. - G.2.3.1.2 Calculate the volume of prisms, cylinders, cones, pyramids, and/or spheres. Formulas are provided on a reference sheet. - G.2.3.1.3 Find the measurement of a missing length given the surface area or volume. - Identifying and naming three-dimensional figures - Finding surface area, lateral area and volume - Finding a missing measure of a three-dimensional figure, given the surface area or volume

