EAST PENN SCHOOL DISTRICT

Course Name:

Applications of Algebra

Curriculum Proposal Date:
October 10, 2022

Curriculum Developed by:
Kim Adams, Sarah Kinzel

APPLICATIONS OF ALGEBRA - FUNCTION OPERATIONS
 STAGE 1 | DESIRED RESULTS

Context and relevance for student learning

Standards

CC.2.2.HS.C. 1 Use the concept and notation of functions to interpret and apply them in terms of their context.
CC.2.2.HS.C. 2 Graph and analyze functions, and use their properties to make connections between the different representations.
CC.2.2.HS.C. 6 Interpret functions in terms of the situation they model.
CC.2.2.HS.D. 3 Extend the knowledge of arithmetic operations and apply to polynomials.

Students will be able to independently use their learning to keep considering...

- How function families form the foundation of algebra

	Meaning
UNDERSTANDINGS	ESSENTIAL QUESTIONS

Students will understand that...

- The notation of a function and what it

Students will keep considering...

- What is a function? represents
- There is a connection between a function, tables of values and the visual representation of the graph.
- Algebraic operations carry over onto functions
- What operations can be performed with functions?

Acquisition

Students will know...

- Key characteristics of functions (domain and range, function vs non-functions)
- How to evaluate functions using a graph and/or an equation
- How to perform algebraic operations over functions (including composition)

Students will be skilled at...

- A2.2.1.1 Analyze and/or use patterns or relations
- A2.1.1.2 Apply the order of operations in computation and in problem solving situations
- A.2.2.1.1.3 Determine the domain, range, or inverse of a relation
- A2.1.2.2 Simplify expressions involving polynomials.

STAGE 1 \| DESIRED RESULTS Context and relevance for student learning		
Standards	Transfer	
CC.2.2.HS.C.I Use the	Students will be able to independently use their learning to keep considering... - How function families form the graphical foundation of algebra	
functions to interpret and	Meaning	
apply them in terms of their context.	UNDERSTANDINGS Students will understand that... - There is a connection between a function, tables	ESSENTIAL QUESTIONS Students will keep considering... How does the equation relate to the graph?
CC.2.2.HS.C. 2 Graph and analyze functions, and use their properties to make connections between the different representations. CC.2.2.HS.C. 4 Interpret	of values and the visual representation of the graph. - When there is a change to the nonlinear equation, there is a change in the graphical representation. - The transformation rules apply to linear and nonlinear functions.	- How do changes to an equation relate to changes in the graph?
have on functions.	Acquisition	
CC.2.2.HS.C. 6 Interpret functions in terms of the situation they model.	Students will know...] How to graph the parent graphs for constant, linear, square root, absolute value, quadratic, cubic, exponential and logarithmic functions. - How to graph using transformation rules related to the parent function (horizontal and vertical shifts, reflections and stretches/shrinks). - How to use interval notation to represent the domain and range from a graph	Students will be skilled at... - A.2.2.1.1.3 Determine the domain, range, or inverse of a relation - A.2.2.2.2.1 Identify or describe the effect of changing parameters within a family of functions. - A2.2.2.2 Describe and/or determine families of functions

APPLICATIONS OF ALGEBRA - SOLVING LINEAR, ABSOLUTE VALUE AND SQUARE ROOT EQUATIONS AND INEQUALITIES

STAGE 1 | DESIRED RESULTS

Context and relevance for student learning

Standards

CC.2.1.HS.F. 4 Use units as a way to understand problems and to guide the solution of multi-step problems.
CC.2.2.HS.D. 2 Write expressions in equivalent forms to solve problems.
CC.2.2.HS.D. 8 Apply inverse operations to solve equations or formulas for a given variable.
CC.2.2.HS.D. 9 Use reasoning to solve equations, and justify the solution method.
CC.2.2.HS.D. 10 Represent, solve and interpret
equations/inequalities and systems of equations/inequalities algebraically and graphically.

Transfer

Students will be able to independently use their learning to keep considering...

- How do I solve an equation or an inequality?

Meaning	
UNDERSTANDINGS Students will understand that... - The rules and relationships of arithmetic and algebra are useful for writing equivalent forms of and solving equations and inequalities. - Algebraic properties and processes are used to solve equations and inequalities. - Inequalities have an infinite number of solutions and can be represented on a number line. - Absolute value functions measure distance and have two solutions.	ESSENTIAL QUESTIONS Students will keep considering... . How can equations be used to represent relationships and solve problems? - How can inequalities be used to represent relationships and solve problems?

Acquisition

Students will know... \quad Students will be skilled at...

- A2.1.3.1.2 Solve equations involving rational and/or radical expressions.
- The difference between solutions to equations and inequalities
- How to solve absolute value functions.
- How to solve square root functions.

STAGE 1 \| DESIRED RESULTS Context and relevance for student learning		
Standards	Transfer	
CC.2.2.HS.D. 2 Write expressions in equivalent	Students will be able to independently use their learning to keep considering... - How do I solve an equation?	
	Meaning	
CC.2.2.HS.C. 5 Construct and compare linear, quadratic, and exponential models to solve problems. CC.2.2.HS.D. 8 Apply inverse operations to solve equations or formulas for a given variable. CC.2.2.HS.D. 9 Use reasoning to solve equations, and justify the solution method.	UNDERSTANDINGS Students will understand that... . What a solution to a quadratic and polynomial equation represents (real and non-real). - Multiple solving methods can obtain the same solution to the quadratic equation. - Difference between a quadratic and polynomial equation - A polynomial equation can be broken down into products of linear and/or quadratic factors to solve. - Recognizing when factors are solvable. - Quadratic can be used to model real world situations (vertical motion)	ESSENTIAL QUESTIONS Students will keep considering... [How do you algebraically solve a quadratic? [How do you algebraically solve a polynomial equation? - How are quadratics used in everyday life?
CC.2.1.HS.F. 4 Use units as a	Acquisition	
way to understand problems and to guide the solution of multi-step problems.	Students will know... - How to solve quadratics by factoring (different two perfect squares, trinomials where $a=1$ and a $\neq 1$ and GCF), square root method and quadratic formula - How to solve polynomials using factoring (GCF, grouping, difference of perfect squares where the exponent is greater than 2 , higher degree trinomials where $a=1$ and $a \neq 1$).	Students will be skilled at... - A2.1.3.1.1 Write and/or solve quadratic equations (including factoring and using the Quadratic Formula). - A2.1.2.2.1 Factor algebraic expressions, including difference of squares and trinomials. Note: Trinomials limited to the form $a x^{2}+b x+c$ where a is not equal to 0 .

STAGE 1 \| DESIRED RESULTS Context and relevance for student learning		
Standards	Transfer	
CC.2.2.HS.C. 3 Write functions or	Students will be able to independently use their learning to keep considering...] How mathematics models real world situations	
between two quantities.	Meaning	
CC.2.2.HS.C. 5 Construct and compare linear, quadratic, and exponential models to solve problems. CC.2.2.HS.C. 6 Interpret functions in terms of the situations they model.	UNDERSTANDINGS Students will understand that... - There is a connection between the exponential function, tables of values and the visual representation of the graph. - Graphs can be used to solve an exponential function - Exponential functions can be used to predict real world outcomes	ESSENTIAL QUESTIONS Students will keep considering... - How do exponential functions model real world applications?
	Acquisition	
	Students will know... - How to solve an exponential function graphically - How to apply exponential formulas for money, growth/decay, and half-life - How to differentiate between exponential growth \& decay	Students will be skilled at... - A2.1.3.1.3 Write and/or solve a simple exponential or logarithmic equation (including common and natural logarithms). - A2.1.3.1.4 Write, solve, and/or apply linear or exponential growth or decay (including problem situations).

APPLICATIONS OF ALGEBRA - MODELING WITH DATA

STAGE 1 \| DESIRED RESULTS Context and relevance for student learning		
Standards	Transfer	
	Students will be able to independently use their learning to keep considering...] How mathematics models real world situations	
and interpret data on	Meaning	
two categorical and quantitative variables. CC.2.4.HS.B. 3 Analyze Linear models to make interpretations based on the data.	UNDERSTANDINGS Students will understand that... - Real world data can be modeled using graphs and algebraic functions - Different regression functions are used based upon the trend observed in the data - Regression models can be used to predict future outcomes	ESSENTIAL QUESTIONS Students will keep considering... - How algebraic regression is used to model real world data
level of accuracy	Acquisition	
appropriate to limitations on measurement when reporting quantities.	Students will know... - How to create a graphical representation of data using technology - How to identify which regression model best fits the data presented - How to use technology to create the algebraic function that models the given data/graph - How to make predictions using mathematical modeling	Students will be skilled at... - A2.2.1.1.1 Analyze a set of data for the existence of a pattern, and represent the pattern with a rule algebraically and/or graphically. - A2.2.3.1.1 Draw, identify, find, interpret, and/or write an equation for a regression model (lines and curves of best fit) for a scatter plot. - A2.2.3.1.2 Make predictions using the equations or graphs of regression models (lines and curves of best fit) of scatter plots.

STAGE 1 | DESIRED RESULTS

Context and relevance for student learning

Standards

CC.2.4.HS.B. 4 Recognize and evaluate random processes underlying statistical experiments.

CC.2.4.HS.B. 5 Make

 inferences and justify conclusions based on sample surveys, experiments, and observational studies.CC.2.4.HS.B. 6 Use the concepts of independence and conditional probability to interpret data.
CC.2.4.HS.B. 7 Apply the rules of probability to compute probabilities of compound events in a uniform probability model.

Transfer
Students will be able to independently use their learning to keep considering...
] How mathematics models real world situations

	Meaning
UNDERSTANDINGS Students will understand that... - Probability models are useful tools for making decisions and predictions. \square There is a difference between odds and probability - Different probability formulas apply to different situations	ESSENTIAL QUESTIONS Students will keep considering... - How can we base decisions on chance? - How can probability be used to simulate events and to predict future happenings?
Acquisition	
Students will know... - When to use probability of compound events vs singular event - How to differentiate between combinations, permutations and the fundamental counting principle - How to differentiate between odds and probability, and find one given the other	Students will be skilled at... - A2.2.3.2.1 Use combinations, permutations, and the fundamental counting principle to solve problems involving probability. - A2.2.3.2.2 Use odds to find probability and/or use probability to find odds. - A2.2.3.2.3 Use probability for independent, dependent, or compound events to predict outcomes.

- Rules of probability
- What the difference is between and independent/dependent event.

